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SUMMARY

Meshless methods are new approaches for solving partial differential equations. The main characteristic of
all these methods is that they do not require the traditional mesh to construct a numerical formulation. They
require node generation instead of mesh generation. In other words, there is no pre-specified connectivity or
relationships among the nodes. This characteristic make these methods powerful. For example, an adaptive
process which requires high computational effort in mesh-dependent methods can be very economically
solved with meshless methods. In this paper, a posteriori error estimate and adaptive refinement strategy
is developed in conjunction with the collocated discrete least-squares (CDLS) meshless method. For this,
an error estimate is first developed for a CDLS meshless method. The proposed error estimator is shown
to be naturally related to the least-squares functional, providing a suitable posterior measure of the error
in the solution. A mesh moving strategy is then used to displace the nodal points such that the errors are
evenly distributed in the solution domain. Efficiency and effectiveness of the proposed error estimator and
adaptive refinement process are tested against two hyperbolic benchmark problems, one with shocked and
the other with low gradient smooth solutions. These experiments show that the proposed adaptive process
is capable of producing stable and accurate results for the difficult problems considered. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of a mesh is a basic characteristic of most numerical approaches for the solution of partial
differential equations. In these approaches, assumptions are made for the local approximation of
the primitive variables, which require meshes to support them. In recent years, a considerable
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attempt has been made to the development of so-called mesh-free (meshless) methods. The aim
of this type of approach is to get rid of at least the structure of the mesh and to approximate the
solution entirely using nodes inside and/or on the boundary of the domain. Many meshless (or
particle) methods have been reported in the literature, such as element-free Galerkin method [1],
diffuse element method [2], reproducing kernel particle method [3], smooth particle hydrodynamics
method [4], particle finite element method (FEM) [5], meshless local Petrov–Galerkin (MLPG)
method [6], etc. Afshar and Arzani [7] developed discrete least-squares (DLS) meshless method
for the solution of convection-dominated problems. In this method, a fully least-squares approach
is used in both function approximation and discretization of the governing differential equations.
Their method has the additional advantage of producing symmetric, positive-definite matrices even
for nonself-adjoint operators as encountered in fluid flow problems.

In an adaptive analysis, there are two fundamental issues, error estimation and domain refinement.
The first requires an error estimate to measure the local and global errors in the approximation,
whereby an adaptive procedure determines whether a refinement is required and if true, where to
refine a domain. The second is performed based on the error information provided by the first.
The effectiveness and efficiency of these two aspects are critical to the performance of an adaptive
procedure. To conduct a posteriori error estimation, two values of a quantity—a computed value
and a reference value—are usually required. The first is the raw value given by direct computations,
while the second is derived from the first via postprocessing (e.g. smoothing or projection). In
FEM, the computed quantities which are usually taken as gradients (or stresses) do not possess
inter-element continuity and have a low accuracy along element boundaries. The improved values
are, therefore, obtained via smoothing procedures. The difference between the raw and improved
values constitutes a basis for error estimation in FEM [8]. For detailed descriptions of these
approaches, the readers may refer to FEM literature [9, 10].

The use of adaptive refinement to improve the accuracy of numerical solution is very recent in
meshless methods. In meshless methods, there is no inter-element discontinuity and the resulting
solution field is already very smooth over the entire problem domain. As a result, error estimates
based on stress smoothing techniques introduced in the context of FEM cannot be used for error
estimation in meshless methods. There is a need, therefore, to develop different error estimates
for adaptive analysis in meshless methods [8]. Some error estimators have been developed for
meshless methods using different techniques. Orkisz [11] presented an adaptive multigrid meshless
finite difference method. Laouar and Villon [12] presented a technique of resolution using the
diffuse element method with an adaptive set of nodes. Nodes are generated by a quadtree-type of
decomposition of the area and the adjustment is made with the help of a posteriori knowledge
of the error estimate. Duarte and Oden [13] used the partition of unity concept in a very general
manner by constructing it from a moving least-squares shape function. The major advantage of
the Duarte and Oden formulation is that it enables the extrinsic basis to vary from node to node,
thus facilitating hp-adaptivity.

Liu and Tu [8] developed an adaptive procedure based on a background mesh using moving least-
squares (MLS) method. It comprises a cell energy error estimate and a local domain refinement
technique. The error estimate differs from conventional pointwise approaches in that it evaluates
error based on individual cells instead of points. Gavete et al. [14] proposed an error indicator
for the element-free Galerkin (EFG) method following the same line used in FEM. The method
calculated the gradient values at the Gauss integration point. A moving least-squares approach was
then used to construct a continuous approximation of the gradient which was subsequently used
to obtain an indication of the ‘a posteriori’ error for EFG method.
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In this paper, a posteriori error estimate and adaptive refinement strategy is developed for
the collocated discrete least-squares (CDLS) meshless method. It is shown that the least-squares
functional defined by the weighted sum of the squared residuals at collocation points is a suitable
posterior measure of the error in the solution. A mesh moving strategy is then used to displace
the nodal points such that the errors are evenly distributed in the solution domain. A projection
mechanism is also introduced and used before the mesh moving step as a means to control the
maximum and minimum nodal spacing in the refined mesh. This is shown to be very effective for
problems with high gradient solutions. Efficiency and effectiveness of the proposed error estimators
and adaptive refinement process are tested against two hyperbolic benchmark problems, one with
shocked and the other with low gradient smooth solutions. The steady nonlinear Burgers equation
and steady shallow-water equation simulating the flow of water over an ogee spillway are used.
These experiments show that the proposed adaptive process is capable of producing stable and
accurate results for the difficult problems considered.

2. MOVING LEAST-SQUARES (MLS) METHOD

Several techniques have been developed to construct shape functions in the development of the
meshless methods. The most widely used of these methods is the MLS approximation by Lan-
caster and Salkauskas [15], the radial point interpolation method (RPIM) by Liu and Gu [16]
and the Kriging interpolation by Gu [17]. Among these methods, the method of MLS has been
widely used for function approximation by the meshless community. The advantages of MLS are
threefold: first, there is no need for explicit meshes in the construction of MLS shape functions.
Second, high-order continuity of shape functions so constructed eliminates the necessity of using
weak forms of governing equations, as required in FEM, which uses standard shape functions.
In addition, higher-order continuity, if required, is not introduced at the expense of increasing
the unknown parameters as usually practiced in FEM. Third; the availability of smooth deriva-
tives eliminates the need for costly procedure of gradient recovery which is usually required by
standard FEM.

In MLS, the function to be approximated is represented by

uh(x) =
m∑
i=1

pi (x)ai (x)≡ pT(x)a(x) (1)

Here, pT(x) is a set of linearly independent polynomial basis and a(x) represents the unknown
coefficients to be determined by the fitting algorithm. The polynomial bases of order m in one and
two dimensions are given by

pT(x)=[1, x, x2, . . . , xm] (2)

pT(x)=pT(x, y) =[1, x, y, x2, xy, y2, . . . , xm, . . . , xym−1, ym] (3)

In MLS approximation, at each point x, a(x) is chosen to minimize the sum of weighted squared
residuals defined by

J = 1

2

n∑
I=1

w(|x − xI |)[pT(xI )a(x) − uI ]2 (4)
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In Equation (4), uI is the nodal value of the function to be approximated, n is the number of nodes
and w(|x − xI |) is the weight function defined to have compact support. The weight functions are
chosen to have the following properties:

(1) w(|x − xI |)>0 on a sub domain (5)

(2) w(|x − xI |) = 0 outside the sub-domain (6)

(3)
∫

�
w(|x − xI |) d�= 1 a normality property (7)

(4) w(|x − xI |) is a monotonically decreasing function (8)

(5) w(|x − xI |) → �(s) as |x − xI | = h → 0 where �(s) is the Dirac delta function (9)

Many weight functions are established and used by different researchers. In this paper, an expo-
nential weight function is used as follows:

w(r)=

⎧⎪⎨
⎪⎩

1

(50)r
, r�1

0, r>1

(10)

In which r = s/smax, s =‖x − xI‖ and smax is the radius of the support. Equation (4) can be written
in the matrix form as

J= (Pa − u)TW(Pa − u) (11)

where

uT = (u1, u2, . . . , un) (12)

P=

⎡
⎢⎢⎢⎢⎢⎣

p1(x1) p2(x1) . . . pm(x1)

p1(x2) p2(x2) . . . pm(x2)

...
...

...
...

p1(xn) p2(xn) · · · pm(xn)

⎤
⎥⎥⎥⎥⎥⎦ (13)

and

W(x)=

⎡
⎢⎢⎢⎢⎢⎣

w(|x − x1|) 0 . . . 0

0 w(|x − x2|) . . . 0

...
...

...
...

0 0 . . . w(|x − xn|)

⎤
⎥⎥⎥⎥⎥⎦ (14)

The coefficients a(x) are found by minimizing J with respect to these coefficients. Carrying out
the differentiation

�J
�a

=A(x)a(x) − B(x)u= 0 (15)
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where

A=PTW(x)P (16)

B=PTW(x) (17)

Solving the above equation for the unknown parameters a(x) results in:

a(x)=A−1(x)B(x)u (18)

The approximation of the unknown function can now be written in the familiar form of:

uh(x)=
n∑

I=1
NI (x)uI (19)

where NI (x) denote the shape function of node I defined as

N=pT(x)A−1(x)B(x) (20)

In this case, uI �=uh(xI ), so the parameters uI cannot be treated like nodal values of the unknown
function. The shape functions are not strict interpolants since they do not pass through the data.
The shape functions do not satisfy the Kronecker delta condition:

Ni (x j ) �= �i j =
{
1 if i = j

0 otherwise

}
(21)

Here, Ni (x j ) is the shape function of node i evaluated at node j and �i j is the Kronecker delta.
Generally, it is necessary to obtain the shape function derivatives. The spatial derivatives of the
shape functions are obtained as

dN(x)
dx

= dP
dx

A−1B + P
d(A−1)

dx
B + PA−1 dB

dx
(22)

3. COLLOCATED DISCRETE LEAST-SQUARES (CDLS) MESHLESS METHOD

Consider the following differential equation:

L(u) = f in � (23)

B(u) = g on �t (24)

u=u on �u (25)

where L and B are some proper differential operators defined on the problem domain � and its
Neumann boundary �t, respectively. The philosophy of least squares is to find an approximate
solution that minimizes the least-squares functional to be defined later. As shown in Figure 1, the
problem domain and boundaries are discretized by n number of nodal points. Besides the nodal
points, the collocation points are used in the problem domain and on its boundaries to construct
the least-squares functional. The total number of collocation points is M comprised of Md internal

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1909–1928
DOI: 10.1002/fld



1914 M. H. AFSHAR AND M. LASHCKARBOLOK

Nodes

Collocations X

Γu

Γt

Figure 1. The problem domain discretized by nodal points and collocation points.

collocation points, Mu collocation points on the Dirichlet boundary, and Mt collocation points on
the Neumann boundary, i.e.

M = Md + Mu + Mt (26)

The approximate value of the function u at a collocation point xk can be obtained through
interpolation

u(xk) =
n∑

i=1
Ni (xk) · ui (27)

where n is the number of nodal points having xk in their support domain. Substituting Equation (27)
into Equations (23)–(25), leads to the differential equation residual Rd, the Neumann boundary
condition residual Rt and the Dirichlet boundary condition residual Ru defined as

R(d)
k = L(uk) − f (xk) =

n∑
j=1

L(N j (xk))u j − f (xk) (k = 1–M) (28)

R(t)
k = B(uk) − g(xk) =

n∑
j=1

B(N j (xk))u j − g(xk) (k = 1–Mt) (29)

R(u)
k = uk − u =

n∑
j=1

(N j (xk))u j − u (k = 1–Mu) (30)

Now, the following least-squares functional of all residuals at all collocation points can be con-
structed as

J = 1

2

(
Md∑
k=1

[R(d)
k ]2 + � ·

Mt∑
k=1

[R(t)
k ]2+� ·

Mu∑
k=1

[R(u)
k ]2

)
(31)

The factors � and � in the above equation are meant to represent the relative weights of the
boundary residuals with respect to the interior residual.

Minimization of Equation (31) with respect to the nodal parameters ui leads to

�J
�ui

=
Md∑
k=1

�R(d)
k

�ui
[R(d)

k ] + �
Mt∑
k=1

�R(t)
k

�ui
[R(t)

k ] + �
Mu∑
k=1

�R(u)
k

�ui
[R(u)

k ] = 0 (32)
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Substituting Equations (28)–(30) into Equation (32) yields the final system of equations:

KU=F (33)

The typical components of the matrix K and the right-hand side vector F are defined as

Klm =
Md∑
i=1

[L(Nl)]Ti [L(Nm)]i + �
Mt∑
i=1

[B(Nl)]Ti [B(Nm)]i + �
Mu∑
i=1

[(Nl)]Ti [(Nm)]i

l,m = 1, . . . , n (34)

Fl = −
Md∑
i=1

[L(Nl)]Ti fi +
Mt∑
i=1

[B(Nl)]Ti gi +
Mu∑
i=1

[(Nl)]Ti (u − u) l = 1, . . . , n (35)

The stiffness matrix K in Equation (34) can be observed to be symmetric and positive definite.
Therefore, the final system of equations can be solved by using efficient iterative procedures such
as conjugate gradient methods.

Two points to be noted here regarding the number of collocation points, M , and the values of
the penalty parameters � and �. In this paper, a uniformly distributed collocation points is used
for all the problems considered. The number of collocation points, M , can be arbitrary as long
as it is large enough to make Equation (33) nonsingular, i.e. M�n. Theoretically, the more the
collocation points used, the more accurate the solution obtained. However, as M increases, the
computational cost of the method will increase. Hence, a reasonable M should be selected. No
theoretical basis for choosing the optimum value of M exists at this time. The proper value of M
can only be obtained via the numerical experimentation [18]. A comprehensive study on the effect
of the number of collocation points on the accuracy of the DLSM method for elliptic problems is
carried out elsewhere [19].

Penalty parameters � and � used in DLSM method are used for the implementation of the
essential and natural boundary conditions. The satisfaction of essential boundary condition is not
straightforward since the unknown nodal values in MLS approaching the shape function are not
physical values. The value of �, � must be chosen in such a way that the residual on the boundaries
with known boundary conditions is more important than the residual in the problem domain. In
this paper, � = 200 is chosen for all the problems considered.

4. ERROR ESTIMATOR

The importance of a suitable error estimator for adaptive refinement cannot be overemphasized.
Since the variational statement for the self-adjoint boundary value problem is normally based on a
weighted residual formulation, it is not surprising that the element residual has been used by some
researchers [20–22] as the basic error indicator for the Galerkin finite element method. However,
in this case the calculation of the element residual may not be straightforward. For example, if the
finite element approximation is piecewise linear on the element, the contribution of second-order
derivatives to the residual is identically zero everywhere, except on the element boundary where
it is undefined [23]. Hence, the inter-element jump discontinuities must be used to calculate these
higher derivatives in this case.
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Since the value of residuals represents the extent to which the numerical solution satisfies the
governing differential equation and its boundary condition, the least-squares functional defined as
the squares residual at an arbitrary point can be considered as a measure of the error of the numerical
solution. This concept can be easily implemented for adaptive refinement and applied to linear
and nonlinear problems. The method is particularly efficient since the least-squares calculations
are already available from the solution procedure in this formulation. Hence, the least-squares
functional provides a suitable error indicator for the CDLS meshless method used here. The error
indicator at an arbitrary point k which may or may not be a nodal or collocation point can,
therefore, be defined as the sum of squared residuals:

J (k) = 1
2 ([R(d)

k ]2 + � · [R(t)
k ]2 + � · [R(u)

k ]2) (36)

5. ADAPTIVE REFINEMENT: MESH MOVING STRATEGY

In general, an analyst has no a priori knowledge of the location of the areas of the solution domain
in which large gradients will occur. An ideal computational algorithm would then require the
ability to automatically refine the nodes in zones of high gradients, as the computation proceeds.
Adaptive refinements have been extensively used in finite element computations. For finite elements,
three methods, namely mesh movement, mesh enrichment and remeshing have been suggested for
adaptive refinement.

In mesh movement, the total number of nodes remains constant, but the location of the nodes
is changed in order to achieve a better overall distribution of the error. Full details of the strategy
adopted for moving the mesh and handling some of the subsequent problems which may arise have
been given in details elsewhere [24]. In mesh-enrichment method, the original mesh is held fixed
and hierarchical elements [25] or simply more elements are added. In the remeshing approach, a
completely new mesh is constructed using the information acquired from the previous computation
[26]. It is obvious that mesh movement approach is more suitable than mesh enrichment because the
scale of the problem remains constant when a mesh movement strategy is used. Mesh movement
approach, however, would encounter some serious problems such as element distortion in the
finite element context. This is the main reason why other methods of refinements have been
favoured in finite element computation. Mesh movement strategy, however, could be easily and
efficiently used with meshless methods since no element distortion is associated with the method.
It should be noted that the mesh movement technique can be used in conjunction with CDLS
meshless method to adaptively adjust both nodal and collocation points to improve the quality of
the solution obtained with a pre-specified number of nodes and collocation points. Here, only a
nodal refinement procedure is used.

When a node refinement is required, springs of prescribed stiffness are placed between each
pair of nodes belonging to the same sub-domain and the nodes are then moved until the spring
system is in equilibrium. For this, consider two nodes i and j belonging to the same sub-domain,
as shown in Figure 2. The force fi j induced in the spring i j connecting these two nodes is taken
to be a function of the distance between nodes

fi j = ci j (Xi − X j ) (37)

where ci j is the stiffness of the spring and Xi and X j are the coordinates of nodes i and j ,
respectively. The stiffness of each spring is assumed to be some function of the solution error. In
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Figure 2. System of springs in a sample sub-domain with five nodes.

FEM, the solution error is obtained using approximation theory. Here, ci j is calculated using the
values of the error indicator at nodes i and j as follows:

ci j = (J (i) + J ( j))/|Xi − X j | (38)

Here, Xi and X j are the initial coordinates of nodes i and j on the initial unrefined mesh of nodes,
respectively. This means that the stiffness of each spring is a function of initial nodal coordinates.
The spring i j exerts two forces of the same magnitude but opposite direction on nodes i and j
defined as

f i ji = ci j (Xi − X j ) (39)

f i jj =−ci j (Xi − X j ) (40)

where f i ji and f i jj are used to represent the forces exerted by spring i j on nodes i and j ,
respectively. These equations can be written in a matrix form to define the stiffness relation for
each spring i j in the system: [

fi

f j

]i j
=
[

ci j −ci j

−ci j ci j

][
Xi

X j

]
(41)

Now, one can allow the nodes to move to an equilibrium position. This means that the vector F of
assembled nodal forces should be equal to zero. This requirement leads to the following system
of algebraic equation to be solved for the unknown vector of nodal position X:

F=CX= 0 (42)

where C is the stiffness matrix of the system calculated by assembling the stiffnesses of all the
springs defined in the system. This process is very similar to the assembly process used in the
FEM to derive stiffness of a system using the element stiffness matrices. It should be noted that
the resulting system of equations is clearly linear as ci j for each spring is considered as a function
of the nodal positioning of the initial nonadapted mesh and, therefore, is not updated during the
solution of the system of equations. It should also be noted that the equation system defined by
(42) is singular before any boundary condition is considered. The boundary condition used here
to solve this system of equations is defined by the requirement that the boundary nodes, 2 for 1-D
problems used here, should not be allowed to move. The sub-domains used to construct the spring
system may or may not correspond to the sub-domains used to construct the meshless solution.
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Here, the most simple of spring systems is used in which each node is only connected to two
nodes on two sides of the node.

Application of this procedure leads to a nodal positioning which is expected to yield a uniform
distribution of the error indicator defined by Equation (36). This could be useful for problems
of elliptic nature with smooth solutions in which the error indicator calculated via Equation
(36) is bounded. Application of this error estimator, however, to problems with high gradi-
ent solution could result in a nodal positioning with very high concentration of nodes around
zones of high gradient solutions. As a remedy to this problem a mapping is proposed and used
here to ensure that a smooth distribution of nodes is obtained. Here, a simple projection of the
power-law type

e= Jb (43)

is used where e is the projected error estimator, J is the value of the raw error indicator defined
by Equation (36) and b is a constant parameter calculated based on the requirement that the ratio
of the maximum and minimum nodal spacing in the final refined mesh is equal to a pre-specified
ratio defined as

hmax

hmin
= hmax

hmin
(44)

Here, hmax and hmin are the maximum and minimum values of the nodal spacing in the adapted
mesh, while hmax and hmin denote the required maximum and minimum nodal spacings in the
refined mesh of nodes, set by the user. Assuming a linear relationship between nodal spacing of
the refined mesh and the projected error estimator:

hmax

hmin
= emax

emin
(45)

Requirement of Equation (44) leads to the calculation of projection parameter as follows:

b= ln

(
hmax

hmin

)/
ln

(
Jmax

Jmin

)
(46)

where Jmax and Jmin are the maximum and minimum values of the raw error indictor cal-
culated at nodal points. The proposed projection mechanism is meant to lead to an adapted
distribution of nodes with nodal spacing in proportion to hmax and hmin at the location of
lowest and highest error indicator defined by Equation (36). Early experiments, however, showed
that this goal could not be achieved when Equation (46) is used to calculate the projection pa-
rameter. This can be attributed to the complex nonlinear relationship between adapted nodal
spacing and projected error indicator implied by Equation (43). An iterative procedure is, there-
fore, devised in which the value of the projection parameter is updated at each iteration as
follows:

bk+1 = bk ln

(
hmax

hmin

)/
ln

(
hkmax

hkmin

)
(47)
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Figure 3. Distribution of projected error and the resulting mesh of nodes for constant raw error estimator.

where hkmax and hkmin are the maximum and minimum values of the nodal spacing of the adapted
mesh at iteration k using the value of bk . This procedure will make sure that the ratio of nodal
spacing in the refined mesh is exactly the same as the required ratio. Our experiments indicate that
usually a few iterations are required by the above procedure to converge. It should be remarked
that when the distribution of the raw error indicator is uniform, Jmax = Jmin, the above procedure
is bypassed assuming a value of unity for the projection parameter b.

It should be emphasized that the proposed error estimator and adaptive refinement is a one-step
process and not an iterative procedure. To exemplify the projection method and mesh movement
strategy, four simple examples are included in this section assuming known distributions of the raw
error indicator. These examples assume three different simple distributions of raw error indicator,
namely uniform, linear and quadratic which should theoretically lead to uniform, linearly varying
and quadratically varying mesh of nodes. A fourth sinusoidal distribution of error is also included to
test the performance of the method for the problems with zones of high gradient solutions. Figures
3–6 show the distributions of assumed raw error estimator, calculated projected error and refined
mesh of nodes for four cases of uniform, linear, quadratic and sinusoidal variations of raw error
estimator, respectively. The processes of projection and refinement are carried out on an initial mesh
of 51 uniformly distributed nodes, assuming a value of 5 and 0.5 for hmax and hmin, respectively. It
is clearly seen that in the first example, Figure 3, the refined mesh coincides with the initial uniform
mesh due to the fact that both of the raw and projected errors are uniform throughout the mesh
which indicates no need for mesh refinement. This situation is well recognized by the projection
method and the proposed refinement strategy. For linear distribution of raw error estimator, shown
in Figure 4, the resulting nodal spacing varies linearly from about 4.6 to 0.46 unit of length in the
refined mesh. It is clearly seen that the ratio of the maximum and minimum nodal spacing of the
refined mesh is exactly the same as the one set by the user through the definition of hmax and hmin.
Figure 5 shows the results for the third case where a quadratic distribution of estimated error is
assumed. Here, the refined nodes are distributed more closely around the centre of the domain as
expected. The maximum and minimum nodal spacings in this case are calculated to be 5.4 and 0.54.
Finally, Figure 6 shows the results of the mesh refinement strategy for the sinusoidal distribution
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Figure 4. Distribution of projected error and the resulting mesh of nodes for
linear variation of raw error estimator.
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Figure 5. Distribution of projected error and the resulting mesh of nodes for
quadratic variation of raw error estimator.

of error estimator with maximum and minimum nodal spacings of 4.6 and 0.46, respectively. The
last example shows the capability of the proposed projection method and the refinement strategy
to recognize the zones of larger error and act accordingly by moving the mesh of nodes on and
around these areas. The maximum number of updating iterations required in these examples was
equal to 6.

The efficiency of the proposed error estimator, projection method and mesh refinement strategy
on engineering problems will be further verified in the next section when considering two numerical
examples of nonlinear burgers and shallow-water equations.
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Figure 6. Distribution of projected error and the resulting mesh of nodes
for sinusoidal raw error estimator.

6. SOLUTION STRATEGY

In this paper, a time marching method is used for the solution of steady-state hyperbolic problems.
For this, the transient form of equations governing the underlying problems are discretized in time
and solved via a time marching method towards steady-state solution. Consider the general form
of differential equations governing the transient hyperbolic problems written in the matrix form as

�u
�t

+ A(u)
�u
�x

=Q(u) on � (48)

subject to appropriate Dirichlet boundary condition:

u=u on �u (49)

Here, u denotes the unknown problem vector, A is the Jacobian matrix which is generally a function
of the unknown vector u and Q is the source term. A semi-discretization is first carried out using
the � method in time

un+1 − un + �t�

[
An+1 �un+1

�x
− Qn+1

]
+ �t (1 − �)

[
An �un

�x
− Qn

]
= 0 (50)

with 1
2���1. Assuming Q=Su, the linearized residuals in the problem domain and its boundaries

are now defined as

Rn+1
� =un+1 − un + �t�

[
An �un+1

�x
− Snun+1

]
+ �t (1 − �)

[
An �un

�x
− Qn

]
on � (51)

Rn+1
�u

=un+1 − u on �u (52)
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To recast the problem into proper form defined by Equations (23) and (25), the differential operators
can now be defined as

L(·) = (·) + �t�

[
An

j
�(·)
�x j

− Sn(·)
]

(53)

f= un − �t (1 − �)

[
An

j
�un

�x j
− Qn

]
(54)

B(·) = 0.0 (55)

The system of equations can now be formed and solved at each time step and the required solution
produced in a time marching manner until a steady-state solution is reached. It should be noted
here that the proposed method is stable for any time and space step sizes due to the implicit nature
of the method.

7. NUMERICAL EXAMPLES

In this section, the application of proposed adaptive CDLS meshless method to solve two examples
from fluid dynamics discipline, namely nonlinear Burger’s equation and steady flow over an ogee
spillway governed by the one-dimensional shallow-water equation is considered. All the solutions
presented are obtained using the definition of smax in a way that at least two nodes are chosen in
the local interpolation domain. A polynomial basis of order zero (P =[1]) is used in all problems
in order to construct MLS shape functions.

7.1. Steady Burger’s equation

This is a problem governed by the inviscid Burger’s equation defined by the following parameters
of Equation (48)

A= u, Q= 0

The problem is solved on the domain 0�x�1 with the following initial and boundary conditions:

u(0)= 1 − 2x, 0�x�1

u(t) = 1, x = 0.0

u(t) = −1, x = 1

The exact solution to this problem is represented by a discontinuity located at the centre of the
domain. First, this problem is solved on a mesh of 51 equally distributed nodes using a time step
size of 0.01. The solution of the problem is attempted by using 501 equally distributed collocation
points, 51 of which coincide with the nodal points. The solution to this problem is shown in Figure 7
where the discontinuity is captured with only three nodal points. By neglecting the small over-
and under-shoots, the solution can be considered as a numerically exact solution.

The raw estimated error of this solution is shown in Figure 8, while the projected error along
with the adapted mesh of nodes is shown in Figure 9. Figure 10 illustrates the high-quality solution
obtained on the adaptively generated mesh which is the exact numerical solution to this problem.
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Figure 7. Steady solution on a uniform mesh of 51 nodes (Burger’s equation).
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Figure 8. Estimated error of the solution obtained on a uniform mesh of 51 nodes (Burger’s equation).

It could be useful to note that the projected error is obtained using the values of hmax = 0.15
and hmin = 0.001. The maximum and minimum values of raw error estimator are calculated to be
Jmax = 1.20 and Jmin = 6.0E−13, leading to a final value of b= 0.2 and, consequently, a smoother
distribution of the projected error between emax = 1.04 and emin = 0.0036. It is the small value of
b= 0.2 which is responsible for scaling down the peak value of the error indicator from 1.2 to
1.04, while scaling up the minimum value of the error from 6.0E− 13 to 0.0036 when projected.
The resulting mesh of nodes shown in Figure 9, has maximum and minimum nodal spacings equal
to hmax = 0.95 and hmin = 0.000635.
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Figure 9. Projected error of the solution obtained on a uniform mesh of 51 nodes (Burger’s equation).
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Figure 10. Final solution obtained on the adapted mesh of 51 nodes (Burger’s equation).

7.2. Inviscid flow an ogee spillway

The flow of inviscid water over an ogee spillway is considered here to be governed by the nonlinear
shallow-water equations in one dimension defined by the following parameters of Equation (48):

u=
[

H + �

(H + �)u

]
, A=

[
0 1

−u2 + g(H + �) 2u

]
, Q=

[
0

g(H + �)dH/dx

]

Here, H is the flow depth, � is the surface elevation, u is the average velocity, g= 9.81 is the
acceleration due to gravity and dH/dx is the bed slope.
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Figure 11. Steady solution obtained on a uniform mesh of 101 nodes (flow over an ogee spillway).
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Figure 12. Estimated error obtained on a uniform mesh of 101 nodes (flow over an ogee spillway).

This problem is first solved on a mesh of 101 equally distributed nodes using a time step size of
0.2. The solution of the problem is attempted using 501 equally distributed collocation points, 101
of which coincide with the nodal points. The numerical results representing the water elevation
are shown in Figure 11.

The estimated error for the above solution is shown in Figure 12, while the projected error along
with the position of generated nodes is shown in Figure 13. Figure 14 illustrates the numerical water
surface elevation along the spillway obtained on the adapted mesh of nodes. The improvement
made in the final solution is not as apparent as in the solution of Burger’s equation due to the
fact that the exact solution of this problem is smooth enough to be properly represented on a
uniform mesh. It could be again useful to note that the projected error is obtained in this example
using the values of hmax = 1.0 and hmin = 0.0025. The maximum and minimum values of raw
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Figure 13. Projected error obtained on a uniform mesh of 101 nodes (flow over an ogee spillway).
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Figure 14. Steady solution obtained on an adapted mesh of 101 nodes (flow over an ogee spillway).

error estimator are calculated to be Jmax = 0.0653 and Jmin = 1.04E−08, leading to a value of
b= 0.383 and, consequently, a smoother distribution of the projected error between emax = 0.352
and emin = 0.0876. Again, here the larger range of the raw error indicator is shrunk into a smaller
range due to the fact that the projection parameter is smaller than one. The resulting mesh of
nodes shown in Figure 11, has maximum and minimum nodal spacings equal to hmax = 4.0 and
hmin = 0.01.

A future note should be added regarding the difference between the raw and projected error
in the examples considered. The peak value of the raw error indicator is much larger in the first
example due to the fact that the exact solution to this problem contains a discontinuity located at
the centre of the domain, while the exact solution of the second example contains a low gradient
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area located at the spillway crest. This difference is relaxed via projection as observed from the
results shown in Figures 9 and 13. The minimum value of the raw error indicator, on the other
hand, is very small in the first example compared with the second one. This is because the exact
solution to the Burger’s equation contains two constant fields which can be accurately represented
by most of the numerical algorithms leading to a very small error.

8. CONCLUDING REMARKS

An error estimator and adaptive refinement procedure is developed in this paper to be used in
conjunction with the CDLS meshless method for the solution of hyperbolic problem with high
gradient solution. The squared residual is proposed as the error estimator which is naturally related
to the least-squares functional used for the construction of the meshless formulation. Amesh moving
strategy is then used to redistribute the nodes such that a uniform distribution of error indicator is
achieved on the adapted mesh. A single-parameter projection strategy was also used to limit the
nodal spacing of the adapted mesh within a predefined minimum and maximum values set by the
user. The efficiency and effectiveness of the proposed error estimator and mesh moving strategy
was successfully tested against two benchmark examples, namely nonlinear Burger’s equation with
a shocked solution and nonlinear shallow-water equation with a low gradient smooth solution.
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